Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
m (Image size)
(Updated article of the week text.)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Tree, plant and animal stem. Wellcome M0001295.jpg|130px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:In-Silico-Gene-Prioritization-by-Integrating-Multiple-Data-Sources-pone.0021137.g005.jpg|250px]]</div>
'''[[Evolutionary informatics]]''' is a sub-branch of [[informatics]] that addresses the algorithmic and technological tools (like information and analytical systems) needed to better manage data from research in ecology and evolutionary biology and answer evolutionary questions. As in [[bioinformatics]] and [[genomics]], scientists studying biological evolution have gathered an increasingly large volume of information, resulting in information management problems. Additionally, as bioinformatics and genomics are pertinent to the study of evolution, utilization of information from those areas is of concern in evolutionary informatics.
'''[[Cancer informatics]]''' is a multidisciplinary field of science that "deals with the resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of [[information]] in cancer" research and treatment. Like many other fields of science, researchers in cancer biology have seen a dramatic increase in the amount of clinical and research data, in particular with genomic and molecular cancer data. While this data can benefit researchers' understanding of cancer behavior and development of better therapies, new and improved data management and analysis tools are needed. Cancer informatics attempts to provide those tools "that interconnect research, clinical activities, and data in an organized and efficient manner, with as broad a database as possible." For many, the coupling of cancer informatics and other bioinformatics tools with computational modeling and statistical analysis will accelerate the goal of making cancer a more treatable if not curable disease.  


Evolutionary informatics has evolved out of a wide variety of scientific, mathematical, and computational endeavors, including evolutionary biology, evolutionary computation, algorithmic and evolutionary algorithmic research, and software development. It can help tackle problems and tasks such as reducing "the growing number of lineages that lack formal taxonomic names," digitizing and semantically enhancing legacy biodiversity data while also making it more portable, and building "sustainable digital community repositories that provide access to rich data and metadata" in the field of evolutionary biology. ('''[[Evolutionary informatics|Full article...]]''')<br />
Cancer informatics can help tackle problems and tasks such as the development of computational diagnosis, prognosis, and predictive models; the development of standards for the entry, annotation, and sharing of clinical cancer data; and the management and distribution of annotated molecular data for further research. ('''[[Cancer informatics|Full article...]]''')<br />
<br />
<br />
''Recently featured'': [[Scientific data management system]], [[Centers for Disease Control and Prevention]], [[Histopathology]]
''Recently featured'': [[Evolutionary informatics]], [[Scientific data management system]], [[Centers for Disease Control and Prevention]]

Revision as of 17:46, 25 January 2015

In-Silico-Gene-Prioritization-by-Integrating-Multiple-Data-Sources-pone.0021137.g005.jpg

Cancer informatics is a multidisciplinary field of science that "deals with the resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in cancer" research and treatment. Like many other fields of science, researchers in cancer biology have seen a dramatic increase in the amount of clinical and research data, in particular with genomic and molecular cancer data. While this data can benefit researchers' understanding of cancer behavior and development of better therapies, new and improved data management and analysis tools are needed. Cancer informatics attempts to provide those tools "that interconnect research, clinical activities, and data in an organized and efficient manner, with as broad a database as possible." For many, the coupling of cancer informatics and other bioinformatics tools with computational modeling and statistical analysis will accelerate the goal of making cancer a more treatable if not curable disease.

Cancer informatics can help tackle problems and tasks such as the development of computational diagnosis, prognosis, and predictive models; the development of standards for the entry, annotation, and sharing of clinical cancer data; and the management and distribution of annotated molecular data for further research. (Full article...)

Recently featured: Evolutionary informatics, Scientific data management system, Centers for Disease Control and Prevention