Difference between revisions of "Cytopathology"

From LIMSWiki
Jump to navigationJump to search
(Updated content. Saving and adding more.)
(Added content. Saving and adding more.)
Line 25: Line 25:


===Preparation===
===Preparation===
Numerous methods exist for the initial preparation of collected cells for examination. However, we'll separate them into two categories:


1. Direct smear techniques: While many methods of smearing samples on to a glass slide have been used over the years, two primary uses persist: mucoid and fine needle aspiration smears. Mucoid smears typically focus on sputum and other bronchial specimens, using either a "pick and smear" method or a "mucolysis" method. This method often may be used for exfoliated samples. Fine needle aspiration smears utilize samples from FNAC collection and require a specific, detailed set of protocols to ensure proper diagnostic sensitivity.<ref name="ShambCyto" />


Intervention cytology - in interventional cytology the pathologist intervenes into the body for sample collection. Nowadays FNAC has become synonymous to interventional cytology.
2. Cell concentration techniques: These types of techniques tend to be more popular as they provide greater diagnostic sensitivity and this better results. Various types of centrifugation are used "to facilitate the deposition of the suspended cells onto the glass slide." Putting the sample into a centrifuge usually results in layering of the sample, including a vital "buffy" layer containing any white blood and tumor cells present in the sample. A much more concentrated smear can then be made. In some cases, however, the sample may be too small to create a clear buffy layer, requiring a special process called cytocentrifugation, which forces a fluid suspension directly onto a glass slide for analysis. In other cases a density gradient fluid must be introduced before centrifuging in order to better separate thin layers by specific gravity. Other methods include gravity sedimentation, filtration, and cell blocking (as if it were a histological sample).<ref name="ShambCyto" />


Sediment cytology &ndash; Here, the sample is collected from the fixative that was used for processing the biopsy or autopsy specimen. The fixative is mixed properly and taken into a centrifuge tube and is centrifuged. The sediment is used for smearing. These sediments are the cells that are shed by the autopsy and biopsy specimen during processing.
An additional initial form of preparation exists for the specific case of examining joint aspirates and other samples containing poorly soluble crystals. This "wet preparation" involves placing a drop of the fluid sample onto an unstained slide and then placing a coverslip over the sample, immediately viewing the sample using polarized light microscopy.<ref name="IlesBiomed" />
 
====Staining====
While wet preparation is enough in samples containing poorly soluble crystals, the majority of samples initially prepared by direct smear or cell concentration require additional steps to ensure the cells and their constituents can be seen properly under the microscope. Staining is the primary secondary preparation for such cases. Staining typically involves the "washing" of the slide in several solvents to better detect cells that would otherwise remain invisible to the eye when viewed under a microscope.
 
For wet-stained preparations, two methods of staining are common: the Papanicolaou (Pap) stain and the haematoxylin and eosin (H&E) stain.  


==References==
==References==
<references/>
<references/>

Revision as of 19:03, 18 April 2014

Cytopathology is a branch of cytology and pathology that studies and diagnoses diseases on the cellular level.[1]

A common application of cytopathology is the Pap smear, used as a screening tool, to detect precancerous cervical lesions and prevent cervical cancer. Cytopathology is also commonly used to investigate thyroid lesions, diseases involving sterile body cavities (peritoneal, pleural, and cerebrospinal), and a wide range of other body sites. It is usually used to aid in the diagnosis of cancer, but also helps in the diagnosis of certain infectious diseases and other inflammatory conditions. Cytopathology is generally used on samples of free cells or tissue fragments, in contrast to histopathology, which studies whole tissues.

Rudolf Ludwig Karl Virchow is considered by many to be one of the fathers of cellular pathology, remembered most for his collection of lectures on the topic, published as Cellular Pathology in 1858.[2][3]

Testing

Cytopathologic tests are sometimes called smear tests because the samples may be smeared across a glass microscope slide for subsequent staining and microscopic examination. However, cytology samples may be prepared in other ways, including cytocentrifugation.[1] Different types of smear tests may also be used for cancer diagnosis. In this sense, it is termed a cytologic smear.[4]

Collection

Two primary methods are used for collecting cells for analysis:

1. Exfoliative cytology: In this method, cells are collected after they have been either spontaneously shed by the body ("spontaneous exfoliation") or manually scraped/brushed off of a surface in the body ("mechanical exfoliation"). An example of spontaneous exfoliation is when cells of the pleural cavity or peritoneal cavity are shed into the pleural or peritoneal fluid. This fluid can be collected via peritoneal washing for examination. Examples of mechanical exfoliation include Pap smears, where cells are scraped from the cervix with a cervical spatula, or bronchial brushings, where a bronchial brush is inserted into the trachea to collect cells from its surface and subject them to cytopathologic analysis.[5]

2. Aspirative cytology: More specifically referred to as fine needle aspiration cytology (FNAC), the aspirative technique tends to be more invasive than exfoliative techniques. In FNAC, a hypodermic needle attached to a syringe is used to collect cells from lesions or masses in various body organs by microcoring, often with the application of negative pressure to increase yield. FNAC can be performed under palpation guidance (i.e., the clinician can feel the lesion) on a mass in superficial regions like the neck, thyroid or breast. FNAC may also be assisted by ultrasound or CAT scan for sampling of deep-seated lesions within the body that cannot be localized via palpation.[5]

FNAC is widely used in many countries, but success rate is dependent on the skill of the practitioner. If performed by a pathologist alone, or as team with pathologist-cytotechnologist, the success rate of proper diagnosis is superior than when performed by a non-pathologist.[6][5]

Preparation

Numerous methods exist for the initial preparation of collected cells for examination. However, we'll separate them into two categories:

1. Direct smear techniques: While many methods of smearing samples on to a glass slide have been used over the years, two primary uses persist: mucoid and fine needle aspiration smears. Mucoid smears typically focus on sputum and other bronchial specimens, using either a "pick and smear" method or a "mucolysis" method. This method often may be used for exfoliated samples. Fine needle aspiration smears utilize samples from FNAC collection and require a specific, detailed set of protocols to ensure proper diagnostic sensitivity.[5]

2. Cell concentration techniques: These types of techniques tend to be more popular as they provide greater diagnostic sensitivity and this better results. Various types of centrifugation are used "to facilitate the deposition of the suspended cells onto the glass slide." Putting the sample into a centrifuge usually results in layering of the sample, including a vital "buffy" layer containing any white blood and tumor cells present in the sample. A much more concentrated smear can then be made. In some cases, however, the sample may be too small to create a clear buffy layer, requiring a special process called cytocentrifugation, which forces a fluid suspension directly onto a glass slide for analysis. In other cases a density gradient fluid must be introduced before centrifuging in order to better separate thin layers by specific gravity. Other methods include gravity sedimentation, filtration, and cell blocking (as if it were a histological sample).[5]

An additional initial form of preparation exists for the specific case of examining joint aspirates and other samples containing poorly soluble crystals. This "wet preparation" involves placing a drop of the fluid sample onto an unstained slide and then placing a coverslip over the sample, immediately viewing the sample using polarized light microscopy.[1]

Staining

While wet preparation is enough in samples containing poorly soluble crystals, the majority of samples initially prepared by direct smear or cell concentration require additional steps to ensure the cells and their constituents can be seen properly under the microscope. Staining is the primary secondary preparation for such cases. Staining typically involves the "washing" of the slide in several solvents to better detect cells that would otherwise remain invisible to the eye when viewed under a microscope.

For wet-stained preparations, two methods of staining are common: the Papanicolaou (Pap) stain and the haematoxylin and eosin (H&E) stain.

References

  1. 1.0 1.1 1.2 Iles, Raymond; Docherty, Suzanne (2011). Biomedical Sciences: Essential Laboratory Medicine. John Wiley & Sons. pp. 196–197. ISBN 9781119950929. http://books.google.com/books?id=5b6gj9wE-PsC&pg=PA196. Retrieved April 18 2014. 
  2. "Rudolf Virchow — father of cellular pathology". Journal of the Royal Society of Medicine 86 (12): 688–689. December 1993. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1294355/?page=1. Retrieved 17 April 2014. 
  3. Virchow, Rudolf Ludwig Karl (1860). Cellular Pathology as Based Upon Physiological and Pathological Histology. John Churchill. http://books.google.com/books?id=nmEGHJy9uswC&printsec=frontcover. Retrieved 17 April 2014. 
  4. Kumar, Vinay; Abbas, Abul K.; Aster, John C. (2012). "Chapter 5: Neoplasia". Robbins Basic Pathology (9th ed.). Elsevier Health Sciences. p. 170. ISBN 9781455737871. http://books.google.com/books?id=jheBzf17C7YC&printsec=frontcover. Retrieved 18 April 2014. 
  5. 5.0 5.1 5.2 5.3 5.4 Wilson, Allan; Evered, Andrew; Shambayati, Behdad (ed.) (2011). "Chapter 2: Preparation Techniques". Cytopathology. Oxford University Press. pp. 12–45. ISBN 9780199533923. http://books.google.com/books?id=rVucAQAAQBAJ&pg=PA12. Retrieved 18 April 2014. 
  6. Orell, Svante R.; Sterrett, Gregory F. (2011). "Chapter 2: The techniques of FNA cytology". Orell and Sterrett's Fine Needle Aspiration Cytology (5th ed.). Elsevier Health Sciences. pp. 8–27. ISBN 9780702047558. http://books.google.com/books?id=Y53mfDAKnQEC&pg=PT54. Retrieved 18 April 2014.